3.3.31 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [231]

3.3.31.1 Optimal result
3.3.31.2 Mathematica [A] (verified)
3.3.31.3 Rubi [A] (verified)
3.3.31.4 Maple [A] (verified)
3.3.31.5 Fricas [A] (verification not implemented)
3.3.31.6 Sympy [F(-1)]
3.3.31.7 Maxima [B] (verification not implemented)
3.3.31.8 Giac [F]
3.3.31.9 Mupad [B] (verification not implemented)

3.3.31.1 Optimal result

Integrand size = 25, antiderivative size = 161 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {26 a^2 \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {104 a^2 \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {208 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}} \]

output
2/7*a^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+26/35*a^2*sin 
(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+104/105*a^2*sin(d*x+c)/d 
/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+208/105*a^2*sin(d*x+c)*sec(d*x+c) 
^(1/2)/d/(a+a*sec(d*x+c))^(1/2)
 
3.3.31.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.45 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a (494+253 \cos (c+d x)+78 \cos (2 (c+d x))+15 \cos (3 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{210 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(7/2),x]
 
output
(a*(494 + 253*Cos[c + d*x] + 78*Cos[2*(c + d*x)] + 15*Cos[3*(c + d*x)])*Sq 
rt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(210*d*Sqrt[Sec[c + d*x]])
 
3.3.31.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4300, 27, 3042, 4292, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4300

\(\displaystyle \frac {2}{7} a \int \frac {13 \sqrt {\sec (c+d x) a+a}}{2 \sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {13}{7} a \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {13}{7} a \left (\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4}{5} \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )\)

input
Int[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(7/2),x]
 
output
(2*a^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + ( 
13*a*((2*a*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) 
 + (4*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]] 
) + (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]))) 
/5))/7
 

3.3.31.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4300
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f 
*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] 
 && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2*m]
 
3.3.31.4 Maple [A] (verified)

Time = 1.25 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.45

method result size
default \(\frac {2 a \left (15 \cos \left (d x +c \right )^{3}+39 \cos \left (d x +c \right )^{2}+52 \cos \left (d x +c \right )+104\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(73\)

input
int((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
2/105/d*a*(15*cos(d*x+c)^3+39*cos(d*x+c)^2+52*cos(d*x+c)+104)*(a*(1+sec(d* 
x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.3.31.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.57 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, a \cos \left (d x + c\right )^{4} + 39 \, a \cos \left (d x + c\right )^{3} + 52 \, a \cos \left (d x + c\right )^{2} + 104 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
2/105*(15*a*cos(d*x + c)^4 + 39*a*cos(d*x + c)^3 + 52*a*cos(d*x + c)^2 + 1 
04*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/(( 
d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))
 
3.3.31.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(3/2)/sec(d*x+c)**(7/2),x)
 
output
Timed out
 
3.3.31.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 303 vs. \(2 (137) = 274\).

Time = 0.40 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.88 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (735 \, a \cos \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 175 \, a \cos \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 63 \, a \cos \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) - 735 \, a \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 175 \, a \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 63 \, a \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 30 \, a \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 63 \, a \sin \left (\frac {5}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 175 \, a \sin \left (\frac {3}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 735 \, a \sin \left (\frac {1}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{840 \, d} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
1/840*sqrt(2)*(735*a*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7 
/2*c)))*sin(7/2*d*x + 7/2*c) + 175*a*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), 
 cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 63*a*cos(2/7*arctan2(sin(7/ 
2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 735*a*cos(7/ 
2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)) 
) - 175*a*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7 
/2*d*x + 7/2*c))) - 63*a*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x 
+ 7/2*c), cos(7/2*d*x + 7/2*c))) + 30*a*sin(7/2*d*x + 7/2*c) + 63*a*sin(5/ 
7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 175*a*sin(3/7*arc 
tan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 735*a*sin(1/7*arctan2( 
sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*sqrt(a)/d
 
3.3.31.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.31.9 Mupad [B] (verification not implemented)

Time = 14.82 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.58 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (910\,\sin \left (c+d\,x\right )+238\,\sin \left (2\,c+2\,d\,x\right )+78\,\sin \left (3\,c+3\,d\,x\right )+15\,\sin \left (4\,c+4\,d\,x\right )\right )}{420\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int((a + a/cos(c + d*x))^(3/2)/(1/cos(c + d*x))^(7/2),x)
 
output
(a*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x 
))^(1/2)*(910*sin(c + d*x) + 238*sin(2*c + 2*d*x) + 78*sin(3*c + 3*d*x) + 
15*sin(4*c + 4*d*x)))/(420*d*(cos(c + d*x) + 1))